



# OpenSciEd Massachusetts Standards Guidance 7<sup>th</sup> Grade: Thermal Energy

This document is to provide guidance to Massachusetts 7th grade teachers who are implementing <u>OpenSciEd</u>. This guidance assumes the OpenSciEd curriculum is being implemented across grades 6-8, following the <u>MA coherent sequence by grade level</u> (download). The following guidance identifies the MA standards addressed in the <u>Thermal Energy</u> unit, and the most effective use of the OpenSciEd materials for 7th grade teachers.

#### **Scope and Sequence Recommendation**

Implement the *Thermal Energy* unit in 7th grade after *Contact Forces* and before *Matter Cycling & Photosynthesis* units. *Thermal Energy* addresses grade 7 physical science and technology/engineering standards, and 8th grade physical science standards, and builds on the foundation set in the *Contact Forces* unit. Refer to the MA coherent sequence by grade level (download) for the complete scope and sequence recommendation.

#### 7th Grade Standards in *Thermal Energy*

| Standards in unit                                                                                    | Lessons building towards standards                 |
|------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| 7.MS-ETS1-4. Generate and analyze data from iterative testing and                                    | Foundational Concepts for Design:                  |
| modification of a proposed object, tool, or process to optimize the object, tool,                    | Lessons 1-14                                       |
| or process for its intended purpose.*                                                                |                                                    |
|                                                                                                      | Design: Lessons 15-17 (analysis), 16-              |
|                                                                                                      | 17 (design, test, iterate), 18 (argue)             |
| 7.MS-ETS1-7(MA). Construct a prototype of a solution to a given design                               | Lessons 16-17                                      |
| problem.*                                                                                            |                                                    |
| 7.MS-PS3-3. Apply scientific principles of energy and heat transfer to design,                       | Lessons 1-18                                       |
| construct, and test a device to minimize or maximize thermal energy transfer.*                       |                                                    |
| 7.MS-PS3-4. Conduct an investigation to determine the relationships among                            | Lessons 10-15                                      |
| the energy transferred, how well the type of matter retains or radiates heat,                        |                                                    |
| the mass, and the change in the average kinetic energy of the particles as                           |                                                    |
| measured by the temperature of the sample.                                                           |                                                    |
| 7.MS-PS3-5. Present evidence to support the claim that when the kinetic                              | Lessons 10-15                                      |
| energy of an object changes, energy is transferred to or from the object.                            |                                                    |
| 7.MS-PS3-6(MA). [Partial] Use a model to explain how thermal energy is                               | Convection: Addressed in Weather,                  |
| transferred out of hotter regions or objects and into colder ones by convection,                     | Climate, & Water Cycling (8 <sup>th</sup> grade in |
| conduction, and radiation.                                                                           | MA)                                                |
| Why partial? Conduction and radiation are emphasized throughout the                                  |                                                    |
| sensemaking process.                                                                                 | Conduction: Lessons 1, 3, 4, 7, 9, 10              |
| <ul> <li>Convection is addressed in Weather, Climate, &amp; Water Cycling (8<sup>th</sup></li> </ul> |                                                    |
| grade in MA)                                                                                         | Radiation: Lesson 8                                |





# OpenSciEd Massachusetts Standards Guidance 7<sup>th</sup> Grade: Thermal Energy

### Additional Standards in Thermal Energy

| Standards in unit                                                           | Lessons building towards standards |
|-----------------------------------------------------------------------------|------------------------------------|
| 6.MS-ETS1-6(MA). Communicate a design solution to an intended user,         | Lessons 15-18                      |
| including design features and limitations of the solution.                  |                                    |
| 6.MS-PS4-2. [Partial] Use diagrams and other models to show that both light | Lessons 8, 15-18                   |
| rays and mechanical waves are reflected, absorbed, or transmitted through   |                                    |
| various materials.                                                          |                                    |
| Why partial? Reflection and transmission of light rays are explored in      |                                    |
| lesson 8 and integrated into the revised student models in lessons 15       |                                    |
| and beyond                                                                  |                                    |
| Reflection, absorption and transmission of mechanical waves, as well as     |                                    |
| more exploration of the behavior of light rays, is addressed in Light &     |                                    |
| Matter, Sound Waves, Forces at a Distance, and Weather, Climate &           |                                    |
| Water Cycling                                                               |                                    |
| 8.MS-PS1-4. Develop a model that describes and predicts changes in particle | Lessons 1-18                       |
| motion, relative spatial arrangement, temperature, and state of a pure      |                                    |
| substance when thermal energy is added or removed.                          |                                    |

**See recommendations below** for addressing these 6<sup>th</sup> and 8<sup>th</sup> grade standards.

## Recommendations for Addressing Standards in Thermal Energy

Include, and teach 8.MS-PS1-4 with *Thermal Energy* as planned in the unit. This standard is included as a foundational standard for communicating explanations of the phenomena related to 7.MS-PS3-3 and 7.MS-PS3-6(MA), especially through the practice of modeling. Excluding this standard would require substantial redesign of the unit, which is not recommended.

**Include, and teach 6.MS-ETS1-6(MA) with** *Thermal Energy* **as planned in the unit.** This standard's engineering focus is the method through which students are assessed for their understanding of concepts across the unit. Communicating their design solution is contained within a single lesson and builds upon lessons that address 7<sup>th</sup> grade standards. Therefore, **it is not recommended to change the summative assessment for this unit**.

**Include, and teach 6.MS-PS4-2 with** *Thermal Energy* **as planned in the unit.** Exploring the function of light rays is integral to developing deep understanding of how heat is transferred into the cup and results in changes in kinetic energy. Therefore, **it is not recommended to change the summative assessment for this unit**.